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Abstract. We study the electromagnetic force exerted on a pair of parallel slab waveguides by the light
propagating through them. We have calculated the dependence of the force on the slab separation by means
of the Maxwell–Stress tensor formalism and we have discussed its main features for the different propagation
modes: spatially symmetric (antisymmetric) modes give rise to an attractive (repulsive) interaction. We
have derived the asymptotic behaviors of the force at small and large separation and we have quantitatively
estimated the mechanical deflection induced on a realistic air-bridge structure.

PACS. 03.50.De Classical electromagnetism, Maxwell equations – 41.20.-q Applied classical electromag-
netism – 42.79.Gn Optical waveguides and couplers

1 Introduction

When two objects in close proximity are illuminated by a
light source an optical force is exerted on each of them,
whose sign can be either attractive or repulsive depending
on the geometry of the objects and of the optical mode
in which light propagates. Physically, this force originates
from the interaction of the induced dipoles in the dielec-
tric media by the electromagnetic field of the light wave.
Its magnitude is proportional to the light intensity and
depends on the actual profile of the electromagnetic field
and on its polarization.

The recent advances of nanotechnologies have led to
the realisation of solid-state samples whose sizes and sep-
arations are so small that the optical forces can have a
significant impact on the shape and the position of the
object. In particular, one may expect in the next future
to take advantage of these optical forces to control the
growth and the self-assembling of artificial materials such
as photonic crystals or random sphere assemblies. More-
over optical forces may be also used to engineer the quan-
tum state of the mechanical motion of nano-objects [1].

In the last years, a significant amount of experimental
and theoretical studies have concerned coupled resonant
systems, such as spherical and disk-shaped whispering
gallery resonators [2] as well as double-layer photonic-
crystal-slab cavities [3]. Thanks to the extremely high
quality factor of these systems, the light intensity in the
resonator is in fact strongly enhanced as compared to the
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input power, which leads to a corresponding increase in
the magnitude of the force.

At the same time the case of two coupled air bridge sil-
icon waveguides with square cross section has been inves-
tigated in [4]: from the reported numerical calculations, it
turns out that the displacement of the silicon wire-bridges
under the action of the induced force can reach values
measurable with standard Atomic Force Microscope tech-
niques already at reasonable input laser power.

Motivated by this intense research and by the fast ad-
vances in the nanotechnological expertise in manipulating
these systems, we here present a systematic characteriza-
tion of the optical force between two parallel planar waveg-
uides. For such a simple geometry most of the results can
be obtained by analytical means, which provides useful
insight into the basic physics of the optical forces.

The paper is organized as follows. In Section 2 the
Maxwell equations for two coupled waveguides system are
solved, and, in particular, expressions are obtained for
the fields and the dispersion relations. In Section 3 the
Maxwell stress tensor technique is used to calculate the
optical force, whose behavior is studied in detail as a func-
tion of the distance between the waveguides and of the
incident light frequency. In Section 4 we quantitatively
estimate the mechanical deflection produced by the ra-
diation force in a realistic air-bridge device and we show
that it is strong enough to be experimentally measured by
means of Atomic Force Microscopy techniques. Finally, in
Section 5 we derive closed expressions for the force in the
limiting cases of small and large separation.
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Fig. 1. (Color online) Left panel: schematic view of the two
coupled waveguide system under study. The red arrows rep-
resent the input laser light. Right panel: transverse cut of the
system along a fixed-z plane. The TE/TM arrows indicate the
polarization of the electric field in the two polarization states.

2 Guided electromagnetic modes in coupled
slab waveguides

The physical configuration we consider in the present pa-
per is shown in Figure 1: a pair of parallel dielectric slabs
of thickness s and refractive index nS separated by a dis-
tance 2a and embedded in a host medium of lower refrac-
tive index nH < nS . The axis x is orthogonal to the slabs
and light is assumed (without loss of generality) to be in a
plane wave state propagating along z. Under this assump-
tion, the electric and magnetic fields can be written in the
form:

E(r, t) = Re
[
E(x) ei(ωt−βz)

]
, (1)

H(r, t) = Re
[
H(x) ei(ωt−βz)

]
, (2)

β being the wave number of the propagation along z and ω
the angular frequency. The y dependence of the fields has
disappeared thanks to the translational invariance of the
system in the waveguide plane, and to the choice made for
the direction of propagation. The general solution for the
electromagnetic fields can be obtained as a linear combi-
nation of such plane waves.

Depending on the orientation of the fields with re-
spect to the propagation direction, two independent elec-
tromagnetic polarizations states can be identified, known
as Transverse Electric (TE) and Transverse Magnetic
(TM) [5,6]. The TE polarization state is characterized
by Ex = Ez = Hy = 0, while the TM polarization is
characterized by Ey = Hx = Hz = 0.

For each TE/TM polarization state, the field wave-
function is determined by solving the corresponding
Maxwell equations. Since we are considering modes which
are guided by the waveguide system, the electromagnetic
field is confined in the slabs, where the wave-vector along
the x-direction is purely real kx = ±κ = ±√

k2n2
S − β2,

with k = ω/c. In the surrounding host medium the elec-

tromagnetic field is evanescent with a purely imaginary
wave-vector kx = ±iσ = ±i

√
β2 − k2n2

H .
For the TE/TM polarizations, this is summarized in

a field wavefunction (that is the Ey or Hy fields for the
TE/TM modes, respectively) which reads:

Ey, Hy =

A

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

α1 e−σ(x−a−s) (x > a + s)
cos[κ(x − a) + φ2] a ≤ x ≤ a + s
α2 cosh(σx) + α′

2 sinh(σx) −a ≤ x ≤ a
cos[κ(x + a) − φ4] −a ≤ x ≤ −a− s
α3 e+σ(x+a+s) x < −a − s

.

(3)

The system having reflection symmetry with respect to
the x = 0 plane, the electromagnetic modes can be clas-
sified as symmetric and antisymmetric depending on the
symmetry operation of the field wavefunction, namely Ey

for the TE modes or Hy for the TM ones. Note that this
classification is related, but not identical to the usual one
in terms of the reflection symmetry of the full electromag-
netic field, where the magnetic H field transforms as a
pseudovector, while E is instead a vector.

The dispersion relation connecting β to ω, as well as
a relation between the amplitude coefficients α and the
phases φ in the different regions are then obtained by
matching the field (3) in the different regions according
to the symmetry of the electric and magnetic fields. For
the symmetric modes, the dispersion law has the following
analytical, yet implicit form:

κs = arctan
(σ

κ

)
+ arctan

[σ

κ
tanh(σa)

]
− mπ, TE (4)

κs = arctan
(

n2
S

n2
H

σ

κ

)

+ arctan
[

n2
S

n2
H

σ

κ
tanh(σa)

]
− mπ, TM (5)

for the TE/TM polarizations, respectively. The dispersion
laws for the antisymmetric modes are obtained from the
symmetric ones by replacing tanh(x) �→ 1/ tanh(x). In
the following, we shall see that this fact holds for other
physical quantities as well. In all these dispersion laws, the
(integer) quantum number m ≥ 0 specifies the number of
nodes of the wavefunction inside each slab.

In summary, the optical modes propagating along z
in a given two waveguide system are classified by their
TE/TM polarization state, the symmetric/antisymmetric
character of the field wavefunction with respect to reflec-
tions on the x = 0 plane, and the number m ≥ 0 of nodes
inside each waveguide. Thanks to the scaling properties of
the Maxwell equations, the qualitative shape of the dis-
persion relations depends on the geometrical parameter
a/s only, which quantifies the ratio between the spacing a
and the thickness s of each slab. The absolute value of s
fixes the natural frequency scale ωs = 2π c/s.

In Figure 2, we have plotted the dispersion of the dif-
ferent modes (TE/TM , symmetric and antisymmetric) of
the coupled slab waveguide system for different values of
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Fig. 2. Main panel: dispersion relation of the different symmetric and antisymmetric branches of the fundamental (m = 0)
and first order (m = 1) TM mode for various waveguides separations. The thick continuous lines refer to the infinite separation
a/s → ∞ case where symmetric and antisymmetric modes are degenerate. Lower and upper lines with respect to the infinite
separation one refer to symmetric (Sym) and antisymmetric (Asym) modes respectively; the thin continuous lines are for
a/s = 0.5, while the dashed ones are for a shorter separation a/s = 0.25. In the smaller panels on the right we have highlighted
the behavior of the m = 0 modes, respectively far from the cut-off (high energy limit) and near the cut-off (low energy limit).

the geometrical parameter a/s. All the branches have a
lower cut-off to the frequencies that can actually propa-
gate in a given mode of the coupled waveguide system.
At the cut-off point, the waveguide dispersion coincides
with the free photon dispersion ω = cβ/nH of the host
medium.

At infinite separation a/s = ∞, the dispersion reduces
to the one of an isolated waveguide, and for every polar-
ization state the symmetric and antisymmetric branches
are degenerate. As the two waveguides are pushed closer,
this degeneracy is lifted, and every branch experiences a
frequency shift whose sign depends on its symmetric or an-
tisymmetric nature. As usual for the bonding/antibonding
electronic states in diatomic molecules [7], the symmetric
states are pushed toward lower frequencies by the cou-
pling, while the antisymmetric ones are pushed toward
higher frequencies. As a consequence, the cut-off frequency
experiences itself a shift of the same sign and comparable
magnitude.

In the next sections, we shall study the electromagnetic
pressure acting on each of the two slab waveguides because
of the presence of the other slab. The pressure being pro-
portional to the intensity of light propagating along the
waveguide system, it is important to relate the amplitude
coefficient A in (3) to the power density P for unit length
in the y-direction. This is easily calculated from the flux of
the Poynting vector through a planar section orthogonal
to the propagation direction.

For the symmetric modes, we obtain

P =
|ATE |2 βs

2ωµ0

[
1 − tanh2(σa)

1 + σ2

κ2 tanh2(σa)
a

s
+ 1

+
1
σs

(
1 +

(1 + σ2

κ2 ) tanh(σa)

1 + σ2

κ2 tanh2(σa)

)]
, (6)

P =
|A2

TM |βs

2ωε0n2
S

⎡
⎢⎣ 1 − tanh2(σa)

1 +
n4

S

n4
H

σ2

κ2 tanh2(σa)

a

s
n2

S

n2
H

+ 1

+
1

σs
n2

H

n2
S

⎛
⎜⎝ 1 + σ2

κ2

1 +
n4

S

n4
H

σ2

κ2

+
(1 + σ2

κ2 ) tanh(σa)

1 +
n4

S

n4
H

σ2

κ2 tanh2(σa)

⎞
⎟⎠

⎤
⎥⎦ ,

(7)

for the TE/TM polarizations, respectively. The expres-
sions for the corresponding antisymmetric modes are ob-
tained by replacing tanh(x) �→ tanh(x)−1 in (6) and (7).

3 Force between two planar waveguides

Starting from the electromagnetic field profiles discussed
in the previous section, we shall now proceed with a cal-
culation of the average electromagnetic force F acting
on the slabs when a monochromatic wave of frequency
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ω is propagating along the coupled waveguide system in
a well-defined mode. To keep the treatment as simple as
possible, we shall assume this force to be equilibrated by
some other, unspecified, force which keeps the system at
mechanical equilibrium at all times. The calculation of
the force will then be performed in the framework of the
macroscopic electrodynamics of continuous media using
the Maxwell stress tensor T [8,9]. This technique allows
one to directly calculate the force, and has been exten-
sively used in the literature to estimate forces of electro-
magnetic origin in many contexts, from clusters of dielec-
tric spheres [10] to waveguides [4], to quantum fluctuations
as in the Casimir effect [11]. An important point of this
formalism is that it does not make any assumption on the
microscopic nature of the material media under examina-
tion and therefore can easily take into account absorption
effects. In the following we shall focus our attention on the
case of dielectric slabs with a real refraction index nS = n
embedded in air, for which nH � 1.

As all the fields have a monochromatic time depen-
dence at frequency ω, momentum conservation arguments
show that the average electromagnetic force acting on a
body is equal to the surface integral of the time averaged
Maxwell tensor

T̄ij =
ε0
2

Re

[
EiE

∗
j + HiH

∗
j − 1

2
δij

∑
k

(EkE∗
k + BkB∗

k)

]
,

(8)
over an arbitrarily chosen closed surface Σ enclosing the
body with outward orientation:

Fi =
∫

Σ

T̄ij(r)dσj . (9)

In our specific configuration, a good choice for Σ is the
one shown in Figure 1b, that is a cylinder of axis parallel
to z and with rectangular bases parallel to the xy-plane.

Thanks to the reflection symmetry of the whole set-
up with respect to the xz-plane, the y component to
the force vanishes Fy = 0. Also along the light propa-
gation direction z the force is zero, indeed as the geome-
try of the waveguide system is symmetric with respect to
the xy-plane, and the dielectric medium is non-absorbing
Im[n] = 0, the combination of this reflection symme-
try and the time-reversal is a symmetry of the problem.
The electromagnetic force is therefore directed along the
x-direction. The contribution of the two planar sides par-
allel to the xz-plane cancel each other by translational
symmetry, as well as the one of the two bases parallel to
the xy-plane. We are therefore left with the sides paral-
lel to the yz-plane; the x component of the force due to
these sides only involves the xx component of the Maxwell
stress tensor; because of the translational symmetry of the
configuration under examination, this quantity can only
depend on the x coordinate:

T̄xx = − ε0
4

[|Ey |2 + |Ez |2 − |Ex|2

+c2µ2
0

(|Hy|2 + |Hz|2 − |Hx|2
)]

. (10)

Inserting the explicit form of the fields, it is immediate
to see that Txx = 0 in the region |x| > a + s external to
the waveguide system. This is due to the evanescent wave
character of the field in this region. The electromagnetic
pressure p (i.e., the force per unit length along z and unit
width along y) is therefore equal to −T̄xx evaluated in
the region between the two waveguides, |x| < a. Positive
(negative) signs for p respectively indicate repulsive (at-
tractive) forces between the waveguides. Plugging in (10)
the explicit expression of the fields found in the previous
section (Sect. 2), we obtain the following results for the
symmetric TE/TM modes:

p =
1
4
ε0 |ATE |2

[(
1 − β2

k2

)
1 − tanh2(σa)

1 + σ2

κ2 tanh2(σa)

]
, TE,

(11)

p =
1
4
µ0 |ATM |2

[(
1 − β2

k2

)
1 − tanh2(σa)

1 + n4 σ2

κ2 tanh2(σa)

]
, TM.

(12)

The expression for the TE/TM antisymmetric modes are
again found by replacing tanh(x) �→ tanh(x)−1 in (11)
and (12). In the following, we will work at constant laser
frequency ω and power density P , so that the amplitude
coefficients ATE and ATM have to be obtained by invert-
ing (6) and (7).

Note that since the Maxwell stress tensor is bilinear
in the local fields, the effect described here does not rely
on the coherence of the light beam, thus the results of
the present paper directly extend to the case of an in-
coherent, thermal source. Indeed the total pressure in-
duced by a source with spectral distribution f(ω) is simply∫

dωf(ω)p(ω), where p is given by equations (11) and (12).
Regarding the monochromatic source, considered here-

after, one has to distinguish two cases, depending on
whether the laser frequency is far from or close to the
cut-off frequency of the considered mode. Results for the
first case are shown in Figure 3 for the m = 0 mode in
310 nm thick silicon (n = 3.5) waveguides: the pressure
is plotted as a function of the separation 2a between the
waveguides. Fixed values are taken for the power density
P = 20 mW/µm and the wavelength λ = 1.55 µm of the
wave. The main feature is that the pressure is always at-
tractive for both TE (continuous lines) and TM (dashed
lines) symmetric modes, while it is repulsive for the spa-
tially antisymmetric modes. Formally, this is an imme-
diate consequence of (11) and (12), once one takes into
account the fact that for guided modes β > k. In magni-
tude, the force is a monotonically decreasing function of
the separation a. Physically, this behavior has an imme-
diate explanation in terms of the analogy with two cou-
pled well models: as shown in Figure 2, the frequency of
the antisymmetric (symmetric) mode for a given β mono-
tonically grows (decreases) as the waveguides are brought
closer.

At large distances, the decay of the pressure as a func-
tion of distance is exponential and for a given TE/TM
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Fig. 3. Electromagnetic pressure for the fundamental (m =
0) TE (continuous lines) and TM (dashed lines) modes for
s = 310 nm thick silicon (n = 3.5) waveguides, a wavelength
λ = 1.55 µm and a power density of P = 20mW/µm. Upper
(lower) curves, corresponding to a repulsive (attractive) force,
refer to antisymmetric (symmetric) modes.

Fig. 4. Profile of the Ex component of the electric field for the
symmetric TE and TM m = 0 modes.

polarization, the symmetric/antisymmetric modes only
differ by the sign of the pressure. Since the TE mode is
more confined in the slabs than the TM one, it has a
shorter characteristic length of the exponential. At short
distances, it is interesting to note that the TM symmet-
ric mode produces an significantly enhanced pressure as
compared to the corresponding TE one. A physical expla-
nation of this behavior is readily obtained by comparing
the Ex(x) electric field profiles of the m = 0 symmetric
TE and TM modes, as shown in Figure 4: while the TE
mode profile has a smooth spatial dependence, the TM

one is strongly concentrated in the region between the
two slabs. This feature is typical of TM modes [12], and
originates from the continuity of the normal component
Dz of the electric displacement vector at the slab inter-
face, which introduces a n2 factor between the values of
Ez at the two sides of the interface.

If the laser frequency is not far from the cut-off of the
mode, the dependence of the pressure p on the separation
a is somehow richer. In Figure 5a we consider the case of
a thicker waveguide s ≈ 1 µm. For the wavelength λ =
1.55 µm under consideration, all the modes up to m = 3
are well confined, while we are just above the isolated
(a/s = ∞) waveguide cut-off for the m = 4 mode. Since
the cut-off frequency of antisymmetric modes increases for
decreasing a, it exists a cut-off separation aco below which
light of the given wavelength ceases being guided in the
m = 4 mode. When a → aco from above, the spatial size
σ−1 of the mode diverges, and the field amplitude between
the guides tends (for a given power density P ) to zero. As
a consequence, the pressure p initially grows for decreasing
a, attains a maximum value at some separation value, and
then goes back to zero as the cut-off separation aco is
approached [13]. Clearly, the cut-off separation is larger
for thinner waveguides (Fig. 5b). This behavior can also
be explained in terms of the two coupled well model: when
the eigenstates of the independent wells are close to the
continuum threshold, there exists a value of the distance
(i.e., of the coupling strength), at which the antisymmetric
state ceases to be bound and enters the continuum. On
the other hand, for the tightly confined m ≤ 3 modes, the
physics is qualitatively the same as in Figure 3.

4 Radiation induced deflection: the case
of the air-bridge waveguide

Although the value of the radiation pressure obtained in
the previous section might seem at a first glance rather
small, it can have a observable effect in nanometric de-
vices. In order to provide a quantitative estimate of such
effects we consider the mechanical deflection induced by
the optical force on an air-bridge double slab waveguide
system made of two thin silicon slabs of length L whose
opposite edges are clamped to the substrate. Such a de-
vice can be realized, e.g., via chemical etching technique
in [15].

The deflection ξ induced by the radiation pressure
on the device can be evaluated using the Euler-Bernoulli
beam equation [14]

EI
∂4ξ

∂x4
= hp(ξ), (13)

where, ξ is the separation between the slabs, E is the
Young modulus, and I = (1/12)hs3 is the area moment
of inertia of the slab’s cross section, whose width and
thickness are h and s. The maximum deflection ξmax in-
duced on each silicon (E = 169 GPa) slab by a power
P = 20 mW/µm at a wavelength λ = 1.55 µm propagat-
ing in the TM symmetric mode is shown in Figure 6 as
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Fig. 5. Plot of the pressure as a function of the separation a for (a) modes with a different order m; (b) for the same
m = 4 and slightly different waveguide thickness. Upper (lower) curves, corresponding to a repulsive (attractive) force, refer to
antisymmetric (symmetric) modes.
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Fig. 6. Maximal value ξmax of the deflection ξ produced by
the TM symmetric mode (with power P = 20mW/µm and
wavelength λ = 1.55 µm) of the radiation induced force on an
silicon double air-bridge waveguide of thickness s = 310 nm, as
a function of the initial separation 2a. Three different values of
the slabs length are considered: L = 30 µm (solid), L = 35 µm
(dashed) and L = 40 µm (dotted).

a function of the initial separation 2a for three different
values of the slab length L = 30, 35, 40 µm, and for slab’s
thickness s = 310 nm. For this parameter choice, a lin-
earized treatment of equation (13) around the initial slab
distance already provides accurate results.

From Figure 6 one can see that the maximal value ξmax

of the deflection ξ induced by the optical force can reach
the values of tens nanometers for reasonable structural pa-
rameters: slabs lengths 30 µm < L < 40 µm (the deflec-
tion is strongly sensitive to L), and waveguides separations
50 nm < 2a < 200 nm. Such deflections are of the same
order of previous investigations made for different config-
urations [4] and are accessible to standard Atomic Force
Microscope techniques [16]. As a final remark, as the pres-
sure is roughly speaking inversely proportional p ∝ 1/vg

to the group velocity vg of the mode, one expects that the
radiation pressure, and hence the mechanical deflection,
can be enhanced if the vg is slowed down by a longitudi-

nal modulation of the structure as in coupled resonator
optical waveguides [17].

5 Large and small distance behavior

In this section, we derive the asymptotic behavior of the
pressure for small and large slab separation, which pro-
vides a deeper insight on the findings of the previous
section.

5.1 Large distance behavior

For large separation a/s → ∞, the force has the typical
exponential decay of two-well systems in the tight-binding
limit. As long as the modes are confined, the general qual-
itative trend is that the larger the characteristic length
(σTE/TM

∞ )−1, the larger the field in between the slabs and
consequently the stronger the force. More specifically: for
a given order m the pressure is (slightly) stronger for the
TM mode than for the corresponding TE one. (ii) The
pressure is stronger for higher m modes.

Quantitative expressions for the case of symmetric (an-
tisymmetric) modes can be obtained by expanding equa-
tions (11) and (12) for large distances:

pTE,±
tb = ±P

⎡
⎣ k

(
1 − βTE 2

∞
k2

)

cβTE∞ s(1 + 2
σT E∞ s)(1 + σT E 2∞

κTE 2∞
)

⎤
⎦ e−2aσT E

∞

(14)

pTM,±
tb = ±P

×

⎡
⎢⎢⎣

k n2
(
1− βTM 2

∞
k2

)

cβTM∞ s

(
1+

(
n2σT M∞
κTM∞

)2

+ 2n2

σT M∞ s

(
1+ σT M 2∞

κTM 2∞

))

⎤
⎥⎥⎦e−2aσT M

∞

(15)
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where κ
TE/TM
∞ , σ

TE/TM
∞ , β

TE/TM
∞ are evaluated at infi-

nite separation a/s = ∞. As before, the +(−) sign refers
to the symmetric (antisymmetric) mode.

5.2 Small distance behavior

In order to get some analytical insight in the small dis-
tance regime, it is useful to expand all the waveguide pa-
rameters in powers of the slab separation a, while keep-
ing P and ω constant. Let us consider the specific case of
β(a) = β0+β1 a+O(a2). The zeroth order β0 = β(a = 0) is
the wave number of the propagation along a single waveg-
uide of double thickness 2s, and has to be calculated from
the dispersion laws once the hyperbolic tangent is replaced
by its limiting value 1 and the doubled thickness is taken
into account as s → 2s. The first order term β1 is given,
e.g., for m = 0 symmetric modes by:

β1(a) = − (σTE,+
0 )3

βTE,+
0 (1 + sσTE,+

0 )
, TE, (16)

β1(a) = − (σTM,+
0 )3

βTM,+
0

[
(σT M,+

0 )2+(κT M,+
0 )2

(σT M,+
0 n2)2+(κTM,+

0 )2
+ σT M,+

0 s
n2

] , TM.

(17)

Note that β1 is negative for all modes, indicating that
the force is attractive. Along the same lines, analytical
expansions can be obtained for the pressure p. The a = 0
value p0 for the symmetric TE/TM modes has the form

pTE,+
0 = P

(σTE,+
0 )3

2ωβTE,+
0 (1 + σTE,+

0 s)
, (18)

pTM,+
0 = P

(σTM,+
0 )3

2ωβTM,+
0

[
(κT M,+

0 )2+(σT M,+
0 )2

(κTM,+
0 )2+n4(σT M,+

0 )2
+ σT M,+

0 s

n2

] .

(19)

Analogous algebra leads to the corresponding expressions
for the antisymmetric TE/TM modes, which have the
form:

pTE,−
0 = −P

σTE,−
0 (κTE,−

0 )2

2ωβTE,−
0 (1 + σTE,−

0 s)
, (20)

pTM,−
0 =

− P
σTM,−

0 (κTM,−
0 )2

2n4 ωβTM,−
0

[
(κTM,−

0 )2+(σT M,−
0 )2

(κT M,−
0 )2+n4(σT M,−

0 )2
+ σT M,−

0 s
n2

] . (21)

Starting from these formulas, a physical explanation can
be provided for the remarkable facts observed in Figure 2
for the m = 0 modes, namely the suppressed value of the
force for the antisymmetric TM mode and the enhanced
value for the symmetric TM mode with respect to the TE
modes. As long as we are considering well confined modes,
the σ0’s of all modes have almost comparable values, some-
what larger than the κ0’s. This explains the general fact

that the force is about a factor 2 weaker for the TE an-
tisymmetric mode than for the corresponding symmetric
one. The behavior for the TM modes can be explained
starting from the value n = 3.5 of the refractive index,
which is significantly larger than 1: thanks to the n4 in
the denominator, the force pTM,−

0 for the antisymmetric
TM mode is dramatically suppressed of a factor ≈150 (for
the chosen value n = 3.5 of the refractive index) with re-
spect to the one pTM,+

0 for the symmetric TM mode. For
similar reasons, the force pTM,+

0 is enhanced of a factor
≈13 over pTE,+

0 because of the n’s in the denominator
(see Fig. 3).

6 Conclusions

In conclusion, we have performed an analytical study of
the optical forces appearing between a pair of parallel
slab waveguides when light is propagating through them.
Depending on the spatial symmetry of the mode wave-
function, the sign of the force can be either attractive or
repulsive. The dependence of the force as a function of
the separation between the slabs has been characterized
for the different polarization states, and analytical expres-
sions have been obtained for both the large and the small
distance limits. A strong enhancement of the force has
been identified for the symmetric TM mode, as well as a
suppression for the antisymmetric TM one. Simple phys-
ical explanations have been provided for these features.
A quantitative study for typical air-bridge configurations
confirms that the mechanical deflection of the structure
induced by the optical force can be measured by standard
Atomic Force Microscopy techniques.

Note added in proofs

After finishing this work a first experimental evidence of
the radiation induced force in resonating nanostructures
has been reported in [18].
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